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Abstract

This paper describes an application of the method of moments

to determine resonant frequencies of irregularly shaped microstrip

patches embedded in a grounded dielectric slab. For analysis, the
microstrip patch is assumed to be excited by a linearly polarized plane

wave that is normal to the patch. The surface-current density that

is induced on the patch because of the incident �eld is expressed in

terms of subdomain functions by dividing the patch into identical

rectangular subdomains. The amplitudes of the subdomain functions,

as a function of frequency, are determined using the electric-�eld

integral equation (EFIE) approach in conjunction with the method of

moments. The resonant frequencies of the patch are then obtained by

selecting the frequency at which the amplitude of the surface-current

density is real. The resonant frequencies of the equilateral triangular

and other nonrectangular patches are computed using the present

technique, and these frequencies are compared with measurements

and other independent calculations.

Introduction

Microstrip patch antennas have been studied extensively in recent years because they o�er many

practical advantages, such as being lightweight, able to conform to the body of a host object, and

relatively easy and inexpensive to fabricate compared with other types of antennas. As a result,

many analytical approaches have been proposed to analyze microstrip patch antennas (ref. 1). The

electric-�eld integral equation (EFIE) approach in conjunction with the method of moments is the

most widely used technique to study microstrip patch antennas (refs. 2 to 6). Early work (refs. 2

to 6) on the application of the EFIE approach to patches is limited to microstrip patches of regular

shapes, such as those that are rectangular, circular, or elliptical. Furthermore, these earlier works

(refs. 2 to 6) use an approach in which the surface-current density on the patch is expressed in terms

of entire domain functions. This paper describes the EFIE approach in conjunction with the method

of moments for solving the problem of irregularly shaped microstrip patch antennas by expressing

the surface currents in terms of subdomain functions.

Several authors (refs. 7 and 8) have used the EFIE approach to analyze irregularly shaped

antennas. The work in references 7 and 8, however, is applicable to irregular plates in free

space. In these papers, a nonrectangular plate is viewed as an interconnection of quadrilateral

plates. The currents on the quadrilateral plates are expressed in terms of nonrectangular surface

modes. Although the segmentation techniques used in reference 7 completely �ll the area of the

nonrectangular plate, extra current modes are required to ensure continuity of surface-current density

at the joining plates of the junctions. Furthermore, when nonrectangular surface modes are used

to express the surface currents, the resulting matrix in the method of moments solution is of a

symmetrical but not of a Toeplitz nature; therefore, the computational time increases.

Mosig (ref. 9) and Michalski and Zheng (ref. 10) use a mixed potential integral equation approach

to solve the problem of irregularly shaped microstrip patches. In these studies, the EFIE is solved

by using numerical techniques in the spatial domain which may require special care to handle the

singularity in the Green's function. Martinson and Kuester (ref. 11) use generalized edge boundary

conditions to accurately analyze irregularly shaped microstrip patches. This approach, however, is

valid only for thin substrates (e.g., d=�0 � 0:01).

This work describes a segmentation technique to analyze irregularly shaped microstrip patch

antennas. We assume that an irregularly shaped patch is enclosed by a rectangle with sides equal



to Wx and Wy. After dividing Wx into (M + 1) sections and Wy into (N + 1) sections, the surface-

current density over the rectangle is expressed in terms of overlapping triangular functions in the

current ow direction and pulse functions in the orthogonal direction. A shape function in the current

expansion function is introduced to ensure zero current outside the patch. The shape function is

equal to 1 if the subdomain lies inside the irregularly shaped patch antenna, and it is equal to 0 if the

subdomain lies outside the irregularly shaped patch antenna. However, for the truly irregular shaped

patch, the subdomain that is close to the boundaries of the patch may be partly occupied by the

patch. In such cases, the subdomain is considered to be inside the patch if the area occupied by the

patch in that subdomain is more than 50 percent of the area of the subdomain. This process of �nding

the shape function, however, becomes tedious and time consuming for complicated geometries.

The EFIE equation is reduced to a matrix equation that is solved using standard matrix equation

solver subroutines when the testing functions are selected to be the same as the expansion functions

(i.e., a Galerkin solution). The surface-current density is then used to determine the resonant

frequency of the patch. One of the disadvantages of the present method is that a large number of

subdomains are required to achieve convergence because the edge conditions for the surface-current

distributions are not explicity expressed. However, the Toeplitz nature of the impedance matrix is

still maintained, thus considerably reducing the matrix �lling time (ref. 12).

Symbols

bax; bay; baz unit vectors along x, y, and z axes

d dielectric substrate thickness, cm

Ei incident electric-�eld vector

Ei0 intensity of incident electric �eld

Es(Jx) scattered electric-�eld vector caused by Jx

Es(Jy) scattered electric-�eld vector caused by Jy

Eti tangential electric-�eld vector

Exi; Eyi x and y components of incident electric �eld

Exs(Jx) x component of scattered electric-�eld caused by Jx

Exs(Jy) x component of scattered electric �eld caused by Jy

Eys(Jx) y component of scattered electric �eld caused by Jx

Eys(Jy) y component of scattered electric �eld caused by Jy

E10 electric-�eld amplitude for perpendicular polarization, V/m

E20 electric-�eld amplitude for parallel polarization, V/m

Fxmn(x; y) expansion function for x-directed current on (m;n)th subdomain

Fxp(x; y) expansion function for x-directed current on pth subdomain

Fymn(x; y) expansion function for y-directed current on (m; n)th subdomain

Fyp(x; y) expansion function for y-directed current on pth subdomain

f0;:::;5 resonant frequencies of various modes, GHz

f
xp

0 Fourier transform of F
xp

0(x; y)

f
yp0

Fourier transform of F
yp0

(x; y)
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Hi incident magnetic �eld vector

ix(m; n) complex amplitude of x-directed current density on (m; n)th subdomain, A/unit

area

iy(m; n) complex amplitude of y-directed current density on (m; n)th subdomain, A/unit

area

ix(p) complex amplitude of x-directed current density on pth subdomain, A/unit area

iy(p) complex amplitude of y-directed current density on pth subdomain, A/unit area

Jx(x; y) x-directed induced surface-current density on plate, A/unit area

Jy(x; y) y-directed induced surface-current density on plate, A/unit area

j =
p
�1

k0 propagation constant/wave number in free space

ki propagation vector of plane wave

M + 1 number of subdivisions in x-direction

m;n (m; n)th subdomain of induced current

N + 1 number of subdivisions in y direction

P total number of x-directed subdomains on plate

Pm(x) piecewise linear distribution in x-direction

Pn(y) piecewise linear distribution in y-direction

p equivalent to (m; n)th x-directed subdomain

p0 equivalent to (m0; n0)th x-directed subdomain

Q total number of y-directed subdomains on plate

Qm(y) pulse distribution in y-direction

Qn(x) pulse distribution in x-direction

r position vector in direction of plane wave

vx(p
0) reaction of p0th x-directed subdomain testing function with Exi

vy(p
0) reaction of p0th y-directed subdomain testing function with Eyi

Wx maximum dimension of plate in x-direction, cm

Wy maximum dimension of plate in y-direction, cm

x; y; z Cartesian coordinates of �eld point

x0; y0; z0 Cartesian coordinates of source point

xm = m �x

Z 0 location of patch, cm

Z
p;p

0

xx mutual impedance between pth and p0th x-directed subdomain currents, ohm

Z
p;p

0

xy mutual impedance between pth y-directed and p0th x-directed subdomain currents,

ohm
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Z
p;p0

yx mutual impedance between pth x-directed and p0th y-directed subdomain currents,

ohm

Z
p;p0

yy mutual impedance between pth and p0th y-directed subdomain currents, ohm

� wedge angle, deg

�x = Wx
M+1

�y =
Wy
N+1

"r relative dielectric constant of slab material

�
0

free-space wave impedance, ohm

�i; �i direction of angle of incident wave, deg

�0 wavelength in free space, cm

Abbreviation:

TM transverse magnetic

Theory

General Theory

Consider an irregularly shaped thin patch embedded in a dielectric slab and illuminated by a

plane wave as shown in �gure 1. The incident �eld can be expressed as

Ei (x; y; z) = Ei0
�
�bax sin (�i) + bay cos (�i)

�
exp [(jk0ki) � r] (1)

for perpendicular polarization, and

Hi (x; y; z) =
Ei0

�
0

�
�bax sin (�i) + bay cos (�i)

�
exp [(jk0ki) � r] (2)

for parallel polarization, where �
0
and k0 are the free-space wave impedance and the wave number,

respectively, and (�i; �i) is the direction of the angle of incident wave. In equations (1) and (2),

Ei0 is the incident electric-�eld intensity; the quantities bax, bay, and baz are the unit vectors along

the x, y, and z axes, respectively; and

ki = bax sin (�i) cos (�i) + bay sin (�i) sin (�i) + baz cos (�i)
r = baxx+ bayy + bazz

The tangential electric �eld in the plane of the patch when the patch is absent (ref. 12) is then

obtained as

Eti = E10
�
�bax sin (�i) + bay cos (�i)

�
exp fj [(k0ki) � bax] xg+

�
j
�
(k0ki) � bay

�
y
	

(3)

for perpendicular polarization, and

Eti = E20
�
�bax cos (�i) + bay sin (�i)

�
exp fj [(k0ki) � bax] xg+

�
j
�
(k0ki) � bay

�
y
	

(4)

for parallel polarization, where

E10 =
j 2Ei0 cos (�i) sin

�
k0z

0kz
�

kz cos (k0dkz) + j cos (�i) sin (k0dkz)
exp [jk0d cos (�i)]
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E20 =
�j 2Ei0 kz cos (�i) sin

�
k0z

0kz
�

"r cos (�i) cos (k0dkz) + jkz sin (k0dkz)
exp [jk0d cos (�i)]

and kz =
q
"r � sin2(�i).

Let Jx(x
0; y0) and Jy(x

0; y0) be the x- and y-directed induced electric surface-current densities on

the patch and Es(Jx) and Es(Jy) be the scattered electric �elds caused by the x- and y-directed

currents, respectively. Setting the total tangential electric �eld over the patch to zero yields

baz � �Es (Jx) +Es

�
Jy
�
+Ei

�
= 0 (5a)

Equation (5a) can be written in component form as

Exs (Jx) + Exs
�
Jy
�
+ Exi = 0

Eys (Jx) + Eys
�
Jy
�
+Eyi = 0

)
(5b)

where the su�xes x and y are used to indicate the x and y components of the scattered and incident

�elds. To solve equations (5) for Jx(x
0; y0) and Jy(x

0; y0), the x- and y-directed currents on the patch

are expressed as

Jx
�
x0; y0

�
=

MX
m=1

N+1X
n=1

ix (m; n)Fxmn
�
x0; y0

�
(6a)

Jy
�
x0; y0

�
=

M+1X
m=1

NX
n=1

iy (m; n)Fymn
�
x0; y0

�
(6b)

In deriving equations (6), the irregularly shaped patch is �rst enclosed by a rectangle with

sides Wx and Wy, and this rectangle is then divided into M + 1 and N + 1 sections along the x

and y directions, respectively, as shown in �gure 1(b). The quantities ix(m; n) and iy(m; n) in

equations (6) are the amplitudes of surface-current densities at the (m; n)th subdomain. The

expansion functions Fxmn(x
0; y0) and Fymn(x

0; y0) in equations (6) are given by

Fxmn
�
x0; y0

�
= Pm

�
x0
�
Qn

�
y0
�

Fymn
�
x0; y0

�
= Qm

�
x0
�
Pn
�
y0
�

where

Pm
�
x0
�
=

8<
:
1� xm�x

0

�x

�
(xm��x) � x0 � xm

�
1� x0�xm

�x

�
xm � x0 � (xm��x)

�

Qn
�
y0
�
=

(
1

�
(n� 1)�y � y0 � n�y

�
0 (Otherwise)

�x =
Wx

M + 1

�y =
Wy

N + 1

In the above expressions, Pn(y
0) is obtained by replacing m and x0 in the expression for Pm(x

0)

by n and y0, respectively. Similarly, Qm(x
0) is obtained by replacing n and y0 in the expression

for Qn(y
0) by m and x0, respectively. For simplicity, the double summation with respect to m

and n in equations (6) can be represented by a single summation with respect to p. If P and Q are
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the maximum numbers of the x- and y-directed subdomain cells, respectively, on the patch, then

equations (6) may be rewritten as

Jx
�
x0; y0

�
=

PP
p=1

ix (p)Fxp
�
x0; y0

�
Jy
�
x0; y0

�
=

P+QP
p=P+1

iy (p)Fyp
�
x0; y0

�
9>>>>=>>>>; (7)

Using the method of moments and test modes that are identical to expansion modes, equations (5)

yieldZZ
Exs (Jx)Fxp0 (x; y) dxdy +

ZZ
Exs

�
Jy
�
Fxp0(x; y) dxdy +

ZZ
ExiFxp0(x; y) dxdy = 0 (8a)

where p0 = 1; 2; 3; : : : ; P , andZZ
Eys (Jx)Fyp0(x; y) dxdy +

ZZ
Eys

�
Jy
�
Fyp0 (x; y) dxdy +

ZZ
ExiFyp0(x; y) dxdy = 0 (8b)

where p0 = P + 1; P + 2; P + 3; : : : ; P + Q, the surface integrals in equations (8a) and (8b) are

carried out over the p0 subdomain. Equations (8a) and (8b) can be written in the following convenient

matrix form: 24Zp;p0

xx Z
p;p0

xy

Z
p;p0

yx Z
p;p0

yy

35" ix (p)
iy (p)

#
=

"
vx
�
p0
�

vy
�
p0
�
#

(9)

where p0 = 1; 2; 3; : : : ; (P +Q) and Z
p;p0

xx and Z
p;p0

xy are the self and mutual impedances between pth

and p0th current basis functions. Detailed expressions for these impedances are given in reference 5.

The elements of excitation vectors in equation (9) are given by

vx
�
p0
�
= �E10 sin (�i) fxp0

�
(k0ki � bax) ; �k0ki � bay�� (10)

vy
�
p0
�
= E10 cos (�i) fyp0

�
(k0ki � bax) ; �k0ki � bay�� (11)

for perpendicular polarization, and

vx
�
p0
�
= E20 cos (�i) fxp0

�
(k0ki � bax) ; �k0ki � bay�� (12)

vy
�
p0
�
= E20 sin (�i) fyp0

�
(k0ki � bax) ; �k0ki � bay�� (13)

for parallel polarization, where fxp0 and fyp0 are the Fourier transforms of Fxp0and Fyp0, respectively.

Resonant Frequency

The current density that is excited by an incident plane wave is obtained by solving the matrix

equation (9). The current amplitudes ix(p) and iy(p) are in general complex quantities; however,

at resonance, ix(p) and iy(p) are real numbers. The resonant frequency of the patch may therefore

be de�ned as a frequency at which the real part of ix(p) and iy(p) is maximum and the imaginary

part is zero. The dominant and higher order resonances of an irregularly shaped patch can therefore

be determined by �nding the frequencies at which the real part of the surface-current density is

maximum and the imaginary part of the surface-current density is zero.

Numerical Results

In this section, resonant frequencies of irregularly shaped patch antennas are obtained and

compared with the measured data and the results obtained using the cavity model (refs. 13 and 14).
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The induced currents ix(p) and iy(p) are determined using equation (9) as a function of frequency.

The dominant and higher order resonances of the patch are determined from the knowledge of the

variation of ix(p) and iy(p) as a function of frequency.

Resonant Frequencies of Equilateral Triangular Patch

As a �rst example, we select an equilateral triangular patch with dimensions a = 10 cm, "r = 2:32,

and d = z0 = 0:16 cm, as shown in �gure 2. For resonant frequency calculations, the patch is assumed

to be excited by a parallel polarized plane wave at normal incidence with �i = 0� or �i = 90�.

The triangular patch is assumed to be enclosed by a rectangle with Wx = 10 cm and

Wy = 8:66 cm, as shown in �gure 2. Selecting values of M and N (e.g., M = N = 11) and de�n-

ing the (m; n)th subdomain for the x- and y-directed currents to be inside the triangular patch if

more than 50 percent of the subdomain area lies inside the patch, the matrix equation (9) is solved

for ix(p) and iy(p). The current densities ix(p) and iy(p) that are normalized to the incident �eld at

the center of the patch are then plotted in �gures 3(a) and 3(b) for the two incidence angles (�i = 0�,

�i = 90�) and (�i = 0�, �i = 0�), respectively. From �gures 3(a) and 3(b), we see that the resonant

frequencies at which the real part of the current density is maximum and the imaginary part of the

current density crosses zero are f0 = 1:210 GHz and f1 = 1:256 GHz.

To test the dependence of these resonant frequencies on M and N , the resonant frequencies are

calculated as a function of M and N and are plotted in �gure 4. This �gure clearly shows that

M = N � 19 gives stable numerical results and that the �rst resonance occurs at f0 = 1:249 GHz

and the second resonance occurs at f1 = 1:276 GHz.

Microstrip patch resonances are usually associated with the cavity modes described in refer-

ence 14. To identify the above two resonances with cavity modes, we must plot a vectorial repre-

sentation of the surface-current density over the patch that is excited by an incident plane wave at

resonant frequencies f0 = 1:249 GHz and f1 = 1:276 GHz, as is done in �gures 5(a) and 5(b). These

�gures show that the magnitude of the surface-current density is proportional to the length of the

vector, while the direction of the current ow is indicated by the arrow direction. Upon careful

examination of the resonances of the TM01 (transverse magnetic) and TM10 cavity modes given in

reference 14, it is clear that the resonance at f0 = 1:249 GHz corresponds to the TM01 mode, and

that the resonance at f1 = 1:276 GHz corresponds to the TM10 cavity mode. Note that the cavity

model discussed in references 13 and 14 predicts that the resonant frequencies of the TM10 and TM01

modes are identical. This technique, however, gives slightly di�erent resonant frequencies of these

modes; this di�erence may be attributed to discretization of the patch.

To study higher order resonances of the triangular patch, surface-current densities that are excited

by plane waves for the incident angles of (�i = 0�, �i = 0�) and (�i = 0�, �i = 90�) are plotted in

�gures 6 and 7, respectively, over a wider frequency band. The resonant frequencies of higher order

modes of the patch are determined from these �gures, and they are presented in table 1 with the

corresponding cavity modes calculated using the cavity model (ref. 14) and measured results given

in reference 13.

The resonant frequencies of the TMmn and TMnm modes are identical, as seen from the cavity

model formulations. As noted earlier, the present method that is based on discretization predicts the

resonant frequencies of these modes to be slightly di�erent from each other. Corresponding vectorial

representations of the surface-current densities at incident angles of (�i = 0�, �i = 0�) and (�i = 0�,

�i = 90�) are depicted in �gures 8 and 9, respectively, for higher order resonant frequencies.

Resonant Frequencies of Circular Patch

As a second example, we consider a circular patch with a = 1:88 cm, as shown in �gure 10. This

patch is assumed to be excited by a parallel polarized plane wave at normal incidence with �i = 0�

7



or �i = 90�. The induced current density ix(p) and iy(p) as a function of frequency at the center

of the patch is obtained after solving equation (9), and it is plotted in �gures 11(a) and 11(b).

Values of M and N were arbitrarily selected to be M = N = 11. These �gures show that the

frequency at which the real parts of the current densities are maximum and the imaginary parts

of the current densities are zero is f0 = 2:760 GHz. The �rst resonance of the patch is therefore

at 2.760 GHz. To test the dependence of the �rst resonance on M and N , f0 is determined as a

function of M and N , and it is plotted in �gure 12. Figure 12 clearly shows that M = N � 19

gives stable numerical results. This �gure also gives the �rst resonant frequency of the circular

patch obtained using the method described in reference 15. Good agreement exists between the

two results for M = N � 19. The vectorial representations of the surface-current density over the

circular patch, excited by the x- and y-directed linearly polarized plane waves at the �rst resonant

frequency, are shown in �gures 13(a) and 13(b), respectively. Comparison of this representation

with the cavity model representation (ref. 14) indicates that the resonant mode at a frequency of

2.760 GHz corresponds to the TM11 cavity mode.

Higher order resonances of the circular patch are determined, and they are given in table 2. This

table also gives higher order resonances that are calculated using the cavity model (ref. 14). Good

agreement exists between the two methods. A vectorial representation of the surface-current densities

at higher order resonant frequencies is given in �gure 14. A comparison of these representations

with the representations obtained by the cavity model con�rms that resonances at frequencies

of 4.685 GHz, 5.855 GHz, and 6.360 GHz correspond to the TM21, TM02, and TM31 cavity modes

(ref. 14).

Resonant Frequency of Trapezoidal Patch

As a third example, we consider a trapezoidal patch with dimensions as shown in �gure 15.

Figures 16(a) and 16(b) present the variation of current density as a function of frequency at the

center of the trapezoidal patch for two angles of incidence. These plots show that the frequency at

which the real part of the current density is maximum while the imaginary part is zero is 1.342 GHz.

The �rst resonance of the patch therefore occurs at a frequency of 1.342 GHz. To test the dependence

of the �rst resonance on M and N , the �rst resonance frequency of the patch is calculated as a

function of M and N , and it is given in table 3. Table 3 clearly shows that M � 12 and N � 6 give

stable numerical results. Figure 17 gives the vectorial representation of the surface-current density

on the patch at the �rst resonance for incident angle of (�i = 0�, �i = 0�).

Conclusions

An electric-�eld integral equation approach in conjunction with the method of moments has been

used to determine the resonant frequencies of irregularly shaped microstrip patches. Numerical

results obtained using this approach compare well with experimental results and other independent

calculations. Discretization of an irregular patch into symmetrical rectangular subdomains, in the

present technique, results in a symmetrical and block Toeplitz impedance matrix. The discretization

scheme used, however, does not explicitly enforce the proper edge conditions on the surface-

current distribution. As a result, a large number of subdomains are required to achieve numerical

convergence.

NASALangley Research Center

Hampton, VA 23681-0001

August 16, 1993
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Table 1. Calculated and Measured Resonant Frequencies of

Equilateral Triangular Patch for M = N = 19

[Patch shown in �g. 2]

Resonant frequency, GHz

Measured results Cavity model
Mode Present method (ref. 12) (ref. 13)

TM01 1.249 1.280 1.299

TM10 1.276

TM11 2.172 2.242 2.252

TM02 2.525 2.550 2.599

TM20 2.510

TM12 3.265

TM21 3.356 3.400 3.439

Table 2. Calculated Resonant Frequencies of Higher

Order Modes of Circular Patch

[Patch shown in �g. 10]

Resonant frequency, GHz

Cavity model
Mode Present method (ref. 13)

TM11 2.816 2.818

TM21 4.685 4.674

TM02 5.855 5.864

Table 3. Resonant Frequencies of Trapezoidal Patch

for Various Values of M and N

[Patch shown in �g. 15]

M N Resonant frequency, GHz

7 5 1.370
12 6 1.345
14 7 1.342
16 8 1.343
18 9 1.343
20 10 1.342
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Figure 1. Geometry of microstrip antenna.
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Figure 2. Geometry of equilateral triangular patch with dimensions a = 10 cm, d = z0 = 0:16 cm,

"r = 2:32, and loss tangent = 0:002.
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Figure 3. Normalized current density as function of resonant frequency for equilateral triangular

patch (shown in �g. 2) for angles of incidence of (�i = 0�, �i = 90�) and (�i = 0�, �i = 0�),

M = N = 11, f0 = 1:210 GHz, and f1 = 1:256 GHz.
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Figure 3. Concluded.
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(a) (�i = 0�, �i = 90�); f0 = 1:249 GHz (TM01 mode case).

Figure 5. Vectorial representation of surface-current density on equilateral triangular patch (shown

in �g. 2) excited by plane wave with angles of incidence of (�i = 0�, �i = 90�) and (�i = 0�,

�i = 0�), f0 = 1:249 GHz (TM01 mode case), and f1 = 1:276 GHz (TM10 mode case).
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(b) (�i = 0�, �i = 0�); f1 = 1:276 GHz (TM10 mode case).

Figure 5. Concluded.
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Figure 6. Normalized current density as function of resonant frequency for equilateral triangular

patch (shown in �g. 2) excited by plane wave at angle of incidence of (�i = 0�, �i = 0�) and

M = N = 19. The terms f1 (1.276 GHz), f3 (2.510 GHz), and f6 (3.355 GHz) are resonant

frequencies of TM10, TM20, and TM21 modes, respectively.
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(a) f2 = 2:172 GHz (TM11 mode case).

Figure 8. Vectorial representation of surface-current density on equilateral triangular patch (shown in

�g. 2) excited by plane wave with angle of incidence of (�i = 0
�
, �i = 0

�
) and resonant frequencies

f2 = 2:172 GHz (TM11 mode case), f4 = 2:510 GHz (TM20 mode case), and f5 = 3:355 GHz

(TM21 mode case).
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(b) f4 = 2:510 GHz (TM20 mode case).

Figure 8. Continued.
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(c) f5 = 3:355 GHz (TM21 mode case).

Figure 8. Concluded.
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(a) f2 = 2:172 GHz (TM11 mode case).

Figure 9. Vectorial representation of surface-current density on equilateral triangular patch (shown in

�g. 2) excited by plane wave with angle of incidence of (�i = 0
�
, �i = 90

�
) and resonant frequencies

f2 = 2:172 GHz (TM11 mode case), f4 = 2:510 GHz (TM02 mode case), and f5 = 3:265 GHz

(TM12 mode case).
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(b) f4 = 2:510 GHz (TM02 mode case).

Figure 9. Continued.
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(c) f5 = 3:265 GHz (TM12 mode case).

Figure 9. Concluded.
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Figure 10. Geometry of circular patch with radius a = 1:88 cm, d = z 0 = 0:16 cm, "r = 2:53, and

Loss tangent = 0:002.
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Figure 11. Normalized current density as function of resonant frequency for circular patch (shown

in �g. 10) for angles of incidence of (�i = 0�, �i = 0�) and (�i = 0�, �i = 90�), M = N = 11, and

f0 = 2:76 GHz.

27



2.00 2.25 2.50 2.75 3.00
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.00 2.25 2.50 2.75 3.00
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

f 0

i  
x

( 
43

 )
/ E

  ,
 A

/u
ni

t a
re

a
i

Resonant frequency, GHz

i  
y

( 
12

0 
) 

/ E
  ,

 A
/u

ni
t a

re
a

i

Resonant frequency, GHz

Real part
Imaginary part

Real part
Imaginary part

(b) (�i = 0�, �i = 90�).

Figure 11. Concluded.
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Figure 12. Resonant frequency of circular patch TM11 mode (shown in �g. 10), excited by plane

wave at angle of incidence of (�i = 0�, �i = 0�) as function of M = N .
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(a) (�i = 0�, �i = 0�).

Figure 13. Vectorial representation of surface-current density on circular patch (shown in �g. 10)

excited by plane wave with angles of incidence of (�i = 0
�
, �i = 0

�
) and (�i = 0

�
, �i = 90

�
) and

f0 = 2:796 GHz (TM11 mode case).
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(b) (�i = 0�, �i = 90�).

Figure 13. Concluded.
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(a) f1 = 4:685 GHz (TM21 mode case).

Figure 14. Vectorial representation of surface-current density on circular patch (shown in �g. 10)

excited by plane wave with angle of incidence of (�i = 45
�
, �i = 90

�
) and resonant frequencies

f1 = 4:685 GHz (TM21 mode case), f2 = 5:855 GHz (TM02 mode case), and f3 = 6:360 GHz

(TM31 mode case).
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(b) f2 = 5:855 GHz (TM02 mode case).

Figure 14. Continued.
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(c) f3 = 6:360 GHz (TM31 mode case).

Figure 14. Concluded.
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Figure 15. Geometry of trapezoidal patch with radius a = 8:08 cm, b = c = 4:04 cm, d = z
0 = 0:16 cm,

� = 45, "r = 2:65, and Loss tangent = 0:002.
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Figure 16. Normalized current density as function of resonant frequency for trapezoidal patch (shown

in �g. 15) excited by plane wave at angles of incidence of (�i = 45�, �i = 0�) and (�i = 45�,

�i = 90�), M = 20, and N = 10.
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Figure 16. Concluded.
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Figure 17. Vectorial representation of surface-current density on trapezoidal patch (shown in �g. 15)

excited by plane wave with angle of incidence of (�i = 0�, �i = 0�), f0 = 1:345 GHz, M = 20, and

N = 10.
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